SOM-ET6ULL

SOM-ET6ULL + SOM-ET6ULL-BB

User Manual

Version: 0.1 2022-10-28

Revision History:

Version	Date	Description
0.1	2022-10-28	Initial Release

Table of Contents

1.	PRODUCT (OVERVIEW	6
	1.1		6
	1.2	RESOURCE DOWNLOAD	6
	1.3	HARDWARE FEATURES	. 6
	1.4	MECHANICAL DIMENSION	6
2.		RATION SYSTEM	7
	2.1	Software Resources	7
	2.1.1	Location of Resources	7
	2.1.2	BSP	. 8
	2.2	STRUCTURE OF EMBEDDED LINUX SYSTEM	8
	2.3	BUILDING DEVELOPMENT ENVIRONMENT	. 9
	2.3.1	Installing Cross Compilation Tools	. 9
	2.3.2	Set Cross Compile Environment	10
	2.4	PREPARING THE SOURCE CODE	10
	2.5	COMPILATION	10
	2.6	LINUX SYSTEM CUSTOMIZATION	12
	2.6.1	Replace U-BOOT LOGO	12
	2.6.2	Replace Kernel LOGO	12
	2.6.3	Setting Configuration Menu	13
	2.6.4	Menu Options	13
	2.6.5	Compile Kernel	14
	2.7	INTRODUCTION TO DRIVERS	15
	2.7.1	SD/MMC	16
	2.7.2	Audio In/Out	17
	2.8	DRIVER DEVELOPMENT	18
	2.8.1	GPIO_LEDs Driver	18

2.9	System Update	25
2.9.1	Update of TF Card System Image	25
2.9.2	Update eMMC	26
2.10	TEST AND DEMONSTRATION	27
2.10.1	RTC	27
2.10.2	TIMEZONE SETTING	27
2.10.3	USB OTG	28
2.10.4	USB HOST	
2.10.5	NETWORK	
2.10.6	LCD	32
2.10.7	TOUCH PANEL	
2.10.8	BACKLIGHT	
2.10.9	WM8960 AUDIO	33
2.10.10	UART	34
2.10.11	RS485	35
2.10.12	CAN BUS	
2.10.13	POWER BUTTON	
2.10.14	LED	37
2.10.15	GPIO	38
2.10.16	DI/DO	39
2.10.17	PCIe	40
2.10.18	SPI FLASH	
2.10.19	TFCard	40
2.10.20	eMMC	
2.10.21	Unique ID	40
2.10.22	WIFI	40
2.10.23	BLUETOOTH	43

2.8.2

1. Product Overview

1.1 Introduction

- 1.2 Resource Download
- **1.3 Hardware Features**
- **1.4 Mechanical Dimension**

2. Linux Operation System

This chapter will give you a general map of the Linux software resources contained in the DVD-ROM provided along with the product, as well as detailed introduction to the process of Linux system development, drivers development, system update, functionality tests and application development examples.

Note:

2.1 Software Resources

The DVR-ROM provided along with the board contains demos, application examples, Linux source code and tools, helping you develop Linux applications and systems easily and quickly.

2.1.1 Location of Resources

You can find software resources such as programs and codes contained in the DVD-ROM according to the information showed in the table below;

Categories	Location
Applications	
	CD\Source\u-boot-imx-2016.03.git.tar.xz
Source Code	CD\Source\linux-imx-4.1.15.git.tar.xz
Tools	CD\Tools\
Precompiled Images	CD\Image

It is recommended to learn Ubuntu Linux installation and embedded Linux development technology in advance.

2.1.2 BSP

Na	ames	Note	Formats
		MMC/SD	Source Code
BOOTLOADER	U-BOOT	FAT	Source Code
		NET	Source Code
KERNEL	LINUX-4.1.15	Support ROM/CRAM/EXT4/FAT /NFS various of file system	Source Code
	SERIAL	Serials driver	Source Code
	RTC	Hardware RTC driver	Source Code
	NET	10/100M Ethernet driver	Source Code
	CAN	CAN bus driver	Source Code
	SPI	SPI driver	Source Code
	QSPI FLASH	QSPI Flash driver	Source Code
	12C	I2C driver	Source Code
	LCD	TFT LCD driver	Source Code
DEVICE DRIVER	TOUCH SCREEN	I2C and TSC Resistive touch panel driver	Source Code
	MMC/SD	MMC/SD controller driver	Source Code
	USB OTG	USB OTG driver	Source Code
	USB HOST	USB HOST driver	Source Code
	AUDIO	WM8960 Audio driver(supports recording & playback)	Source Code
	BUTTON	GPIO button driver	Source Code
	LED	LED driver	Source Code
	BUZZER	Buzzer driver	Source Code
	WIFI	USB WIFI dongle driver	Source Code
ROOTFS	YOCTO	X11 with Qt5.6	Image

The following table lists types and formats of the files contained in BSP;

2.2 Structure of Embedded Linux System

SOM-ET6ULL board is shipped with Linux-4.1.15 system in eMMC by default. This system consists of bootloader, kernel and rootfs. The following table shows the structure of embedded Linux system.

eMMC/S	D		
Partition	MBR	FAT	EXT4

				1
Image	Bootloader	DTB, Kernel	Yocto Rootfs	

- Bootloader is a program generated by u-boot compiling; its file name is <u>u-boot sd.imx</u> or <u>u-boot emmc.imx</u>.
- 2) The kernel used in this document is Linux 4.1.15 and has been customized according to the hardware design.
- 3) Rootfs stores open-source system Yocto with EXT4 format.

2.3 Building Development Environment

Before developing software, user has to establish a Linux cross development environment on PC. This section will take **Ubuntu20.04** operating system as an example to describe how to establish a cross development environment.

It is strongly recommended to install necessary software packages for a newly installed Ubuntu through the following commands.

 sudo apt-get update; sudo apt-get install -y build-essential git xz-utils ncurse s-dev autoconf libtool automake texinfo bison flex libc6:i386 libncurses5:i386 libstdc++6:i386

Note:

- Each instruction has been put a bullets "•" before it to prevent confusion caused by the long instructions that occupy more than one line in the context.
- Please note the SPACES within each instruction; Missing of any SPACE will cause failure when executing instructions.

2.3.1 Installing Cross Compilation Tools

We provide 2 cross-compilers under **Tools** directory:

1) fsl-imx-x11-gcc-5.3.0.tar.xz

The item ① is mainly used to compile u-boot and kernel.

```
sudo tar -xvf fsl-imx-x11-gcc-5.3.0.tar.xz -C /opt
```

It will extract and install under *lopt* directory, keep the default settings.

2.3.2 Set Cross Compile Environment

Run the following commands to set the source code building environment:

- source /opt/fsl-imx-x11/4.1.15-2.0.0/environment-setup-cortexa7hf-neon-poky-linu x-gnueabi
- export ARCH=arm
- export CROSS_COMPILE=arm-poky-linux-gnueabi-

Note:

- The instructions can be added in the .bashrc file located at the user directory, so that the addition of environment variables will be loaded automatically when the system is booting up;
- If you want to check the path, please use the instruction printenv PATH

2.4 Preparing the Source Code

Please refer to chapter <1.2 Resource Download > to get the development materials,

You can get source code under Source directory.

- tar -xvf u-boot-imx-2016.03.git.tar.xz
- tar -xvf linux-imx-4.1.15.git.tar.xz

Then we can get the source code directory **<u>u-boot-imx-2016.03</u>** and **<u>linux-imx-</u>**

<u>4.1.15</u>.

2.5 Compilation

1) Compiling Bootloader

Run the following commands to compile bootloader:

- cd u-boot-imx-2016.03
- git checkout .
- vi make.sh

```
source /opt/fsl-imx-x11/4.1.15-2.0.0/environment-setup-cortexa7hf-neon-poky-linux-gnuea
bi
export ARCH=arm
export CROSS_COMPILE=arm-poky-linux-gnueabi-
DESTDIR="/dev/shm/"
```

DESTDIR: point to a directory to store the target image.

Change **DESTDIR** value to make it point to your target directory according to your local environment.

./make.sh

After all the instructions are executed, you can find the booting images named

u-boot_emmc.imx and u-boot_sd.imx under DESTDIR directory.

2) Compiling Kernel

Execute the following instructions to compile kernel:

- cd linux-imx-4.1.15
- git checkout .
- vi make.sh

```
source /opt/fsl-imx-x11/4.1.15-2.0.0/environment-setup-cortexa7hf-neon-poky-linux-gnuea
bi
export ARCH=arm
export CROSS_COMPILE=arm-poky-linux-gnueabi-
DESTDIR="/dev/shm"
```

DESTDIR: point to a directory to store the target image.

Please modify **DESTDIR** according to your local environment.

make ARCH=arm distclean

./make.sh modules

If it's successfully built, you can find kernel images named <u>.dtb</u> files, <u>zImage</u> a

nd lib/modules/4.1.15 under DESTDIR directory.

Note:

The command ./make.sh, without parameter, only build dtbs and zImage; but ./mak e.sh modules will build dtbs, zImage and driver modules.

2.6 Linux System Customization

In order to satisfy different requirements of customers, designers commonly need to make some custom modification based on the default configuration of Linux kernel. This chapter will introduce the process of system customization with some examples.

2.6.1 Replace U-BOOT LOGO

- Prepare a picture; any format which can be recognized by Photoshop is OK.
- Run Photoshop program, open and load the picture.
- Resize to make it suitable for your display screen size.
- Save as RGB888 BMP named <u>logo.bmp</u>.
- Copy <u>logo.bmp</u> into the FAT partition of the bootable SDCard.
- Install the bootable SDCard on arm board, power up and check the LOGO displayed on screen.

Note:

2.6.2 Replace Kernel LOGO

- Prepare a picture suitable for your display screen size, named <u>my logo.png</u> for example.
- Install some necessary programs under Ubuntu.
 - sudo apt-get install netpbm gimp

Modify <u>uEnv.txt</u> to choose the correct panel type. If the setting is wrong, the LCD will not display normally.

- Run command under Ubuntu desktop terminal:
 - pngtopnm my_logo.png > linuxlogo.pnm
 - pnmquant 224 linuxlogo.pnm > linuxlogo224.pnm
 - pnmtoplainpnm linuxlogo224.pnm > logo_linux_clut224.ppm
- Update Linux source code.
 - cp -f logo_linux_clut224.ppm <YOUR_PATH>/linux-imx-4.1.15/drivers/video/logo/l
 ogo_linux_clut224.ppm
- Re-build the kernel.
 - make ARCH=arm distclean
 - ./make.sh

Update the target file **<u>zImage</u>** to the board, reboot and check the boot logo on the display screen.

2.6.3 Setting Configuration Menu

A default configuration file is provided under kernel source codes:

linux-imx-4.1.15/arch/arm/configs/emtop-som-et6ull_defconfig

Please execute the following commands to enter the configuration menu:

- cd linux-imx-4.1.15
- make ARCH=arm emtop-som-et6ull_defconfig
- make ARCH=arm menuconfig

Note:

If an error occurs when command 'make ARCH=arm menuconfig' is executed, you might need to install 'ncurse' in the Ubuntu system, 'ncurses' is a character graphic library required to generate configuration menu. Please enter the following instruction to install the library: sudo apt-get install libncurses5-dev

2.6.4 Menu Options

Configure options according to customization requirements after entering configu

ration menu, for example, access Device Drivers > Input device support > Touc

hscreens > Goodix I2C touchscreen as shown below:

- -> Device Drivers
 - -> Input device support
 - -> Touchscreens
 - -> Goodix I2C touchscreen

Arr	ow key	s navigate the menu. < Enters selects submenus> (or empty submenus
). H	ighlighted letters are hotkeys. Pressing <y> includes. <n> excludes. <m< th=""></m<></n></y>
mod	lularize	es features. Press <esc><esc> to exit. <? > for Help. > for Search.</esc></esc>
Leo	iend: [*] built-in [] excluded <m> module < > module capable</m>
laad	aaaaaaa	, <u>, , , , , , , , , , , , , , , , , , </u>
x		Fouchscreens
x	<*>	ADS7846/TSC2046/AD7873 and AD(S)7843 based touchscreens
x	<*>	CT36X based touchscreens for WLD
x	< >	AD7877 based touchscreens
x	< >	Analog Devices AD7879-1/AD7889-1 touchscreen interface
x	< >	Microchip AR1021 i2c touchscreen
х	< >	Atmel mXT I2C Touchscreen
х	< >	AUO in-cell touchscreen using Pixcir ICs
x	< >	BU21013 based touch panel controllers
x	< >	chipone icn8318 touchscreen controller
x	< >	cy8ctmg110 touchscreen
х	< >	Cypress TTSP touchscreen
x	< >	Cypress TrueTouch Gen4 Touchscreen Driver
x	< >	Dialog DA9052/DA9053 TSI
x	< >	Dynapro serial touchscreen
x	< >	Hampshire serial touchscreen
x	< >	EETI touchscreen panel support
x	<->	ELII egalax multi-touch panel support
×.	5.5	ELAN LOUCHSCREEN INDUC OF IVER
x	5.2	Fujitsu serial touchscreen
Č.	5 P	Tistek II 210V based touchs smaan
÷	20	Gunza AHL 515 touchscrean
<u></u>	20	Elan A/TH T2C touchscreen
÷	20	Elo serial touchscreen
0	20	Wacow W8001 nanahlad sarial touchscreen
÷.	20	Wacom Tablet support (I2C)
man	ທດີ່ໂ	
anade	1000000	

Set Goodix I2C touchscreen to <*>, exit and save changes.

2.6.5 Compile Kernel

Please execute the following instructions to recompile kernel:

./make.sh

The script will **NOT** overwrite the configuration modified by menuconfig. It means that the current setting you modified is effective in your target kernel image.

If you want to restore to the default configuration, please delete the file <u>.config</u> and run ./make.sh.

2.7 Introduction to Drivers

Category	Name	Description	Location
		MMC/SD	drivers/mmc/fsl_esdhc_imx.c
Bootloader	u-boot	FAT	fs/
		NET	drivers/net/fec_mxc.c
Kernel	Linux-4.1	Support ROM/CRAM/EXT4 /FAT/NFS	fs/
	SERIAL	Serial driver	drivers/tty/serial/imx.c
	RTC	Hardware RTC driver	drivers/rtc/rtc-rx8010.c
	NET	10/100M/1000M Ethernet driver	drivers/net/ethernet/freescale/fec_main.c
	CAN	CAN bus driver	drivers/net/can/spi/mcp251x.c
	SPI	SPI driver	drivers/spi/spi-imx.c
	SPI FLASH	SPI Flash driver	drivers/mtd/spi-nor/spi-nor.c
	LCD	MIPI-DSI driver	drivers/video/fbdev/mxsfb.c
	TOUCH SCREEN	I2C Resistive touch panel driver	drivers/input/touchscreen/ili210x.c
Devices	MMC/SD	MMC/SD controller dirver	drivers/mmc/host/sdhci-esdhc-imx.c
	USB	USB controller dirver	drivers/usb/host/ehci-mxc.c
	AUDIO	Audio driver (supporting re cording/playback)	sound/soc/fsl/imx-wm8960.c
	BUTTON	GPIO button driver	drivers/input/keyboard/snvs_pwrkey.c
	LED	LED driver	drivers/leds/leds-gpio.c
	BUZZER	Buzzer driver	drivers/leds/leds-gpio.c
	WIFI	USB WiFi dongle driver	drivers/net/wireless/realtek
	BLUETOOTH	USB Bluetooth driver	drivers/bluetooth/btusb.c
	PCIE	4G module driver	drivers/usb/serial/usb_wwan.c

The table below shows the access path to find all the drivers:

2.7.1 SD/MMC

SD/MMC drivers in Linux are mainly consisted of SD/MMC core, mmc_block, mmc_queue and SD/MMC driver:

- SD/MMC core realizes the codes unrelated to structure in the SD/MMC card operation;
- mmc_block realizes driver structure when SD/MMC card is used as a block device;
- 3) mmc_queue realizes management of request queue;
- 4) SD/MMC driver realizes specific controller driver.

Drivers and relevant documents:

linux-imx-4.1.15/drivers/mmc/

linux-imx-4.1.15/drivers/mmc/host/sdhci-esdhc-imx.c

2.7.2 Audio In/Out

ASoC embedded audio system basically consists of three components:

 Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm definition and codec IO functions.

2) Platform driver: It contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) of that platform.

3) Machine driver: The machine driver handles any machine specific

controls and audio events i.e. turning on an amp at start of playback.

Drivers and relevant documents:

linux-imx-4.1.15/sound/soc/fsl

linux-imx-4.1.15/sound/soc/fsl/imx-wm8960.c

2.8 Driver development

2.8.1 GPIO_LEDs Driver

1) Device Definition

linux-imx-4.1.15/arch/arm/boot/dts/emtop-som-et6ull-emmc.dts

Configure GPIO3.16 as system runing status indicator, blinking as heartbeat.

lec	ls {
	compatible = "gpio-leds";
	pinctrl-names = "default";
	pinctrl-0 = <& pinctrl_leds>;
	sys {
	label = "sys";
	gpios = <&gpio5 9 GPIO_ACTIVE_LOW>;
	linux,default-trigger = "heartbeat";
	};

2) GPIO pinmux Configuration

linux-imx-4.1.15/arch/arm/boot/dts/emtop-som-et6ull-emmc.dts

```
Configure SNVS_TAMPER as GPIO5_IO09 function:
```

```
&iomuxc_snvs {
     imx6ul-evk {
           pinctrl_snvs_leds: snvs_leds {
                fsl,pins = <
                      MX6UL_PAD_SNVS_TAMPER9__GPIO5_IO09
                                                                              0xb0
                 >;
           };
     };
};
/{
     leds {
           compatible = "gpio-leds";
           pinctrl-names = "default";
           pinctrl-0 = <&pinctrl_snvs_leds >;
           status = "okay";
```

```
sys {
    label = "sys";
    gpios = <&gpio5 9 GPIO_ACTIVE_LOW>;
    linux,default-trigger = "heartbeat";
    };
    ...
};
```

3) Driver Design

linux-imx-4.1.15/drivers/leds/leds-gpio.c

a) Call platform_driver_register to register gpio_leds driver

```
static struct platform_driver gpio_led_driver = {
    .probe
                = gpio_led_probe,
                  = gpio_led_shutdown,
    .shutdown
    .driver
              = {
        .name = "leds-gpio",
        .of_match_table = of_gpio_leds_match,
    },
};
module_platform_driver(gpio_led_driver);
MODULE_AUTHOR("Raphael Assenat <raph@8d.com>, Trent Piepho <tpiepho@freesc
ale.com>");
MODULE_DESCRIPTION("GPIO LED driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:leds-gpio");
```



```
static int gpio_led_probe(struct platform_device *pdev)
{
...
priv->num_leds = pdata->num_leds;
for (i = 0; i < priv->num_leds; i++) {
    const struct gpio_led *template = &pdata->leds[i];
    struct gpio_led_data *led_dat = &priv->leds[i];
    if (template->gpiod)
        led_dat->gpiod = template->gpiod;
    else
        led_dat->gpiod =
            gpio_led_get_gpiod(&pdev->dev,
```

```
i, template);
             if (IS_ERR(led_dat->gpiod)) {
                 dev_info(&pdev->dev, "Skipping unavailable LED gpio %d (%s)\n",
                       template->gpio, template->name);
                 continue;
             }
             ret = create_gpio_led(template, led_dat,
                             &pdev->dev, NULL,
                             pdata->gpio_blink_set);
             if (ret < 0)
                 return ret;
        }
    } else {
         priv = gpio_leds_create(pdev);
         if (IS_ERR(priv))
             return PTR_ERR(priv);
    }
    platform_set_drvdata(pdev, priv);
    return 0;
static int create_gpio_led(const struct gpio_led *template,
    struct gpio_led_data *led_dat, struct device *parent,
    struct fwnode_handle *fwnode, gpio_blink_set_t blink_set)
    struct led_init_data init_data = {};
    int ret, state;
    led_dat->cdev.default_trigger = template->default_trigger;
    led_dat->can_sleep = gpiod_cansleep(led_dat->gpiod);
    if (!led_dat->can_sleep)
        led_dat->cdev.brightness_set = gpio_led_set;
    else
        led_dat->cdev.brightness_set_blocking = gpio_led_set_blocking;
    led_dat->blinking = 0;
    if (blink_set) {
        led_dat->platform_gpio_blink_set = blink_set;
        led_dat->cdev.blink_set = gpio_blink_set;
    }
    if (template->default_state == LEDS_GPIO_DEFSTATE_KEEP) {
```

}

{

```
state = gpiod_get_value_cansleep(led_dat->gpiod);
         if (state < 0)
             return state;
    } else {
         state = (template->default_state == LEDS_GPIO_DEFSTATE_ON);
    }
    led_dat->cdev.brightness = state ? LED_FULL : LED_OFF;
    if (!template->retain_state_suspended)
         led_dat->cdev.flags |= LED_CORE_SUSPENDRESUME;
    if (template->panic_indicator)
         led_dat->cdev.flags |= LED_PANIC_INDICATOR;
    if (template->retain_state_shutdown)
         led_dat->cdev.flags |= LED_RETAIN_AT_SHUTDOWN;
    ret = gpiod_direction_output(led_dat->gpiod, state);
    if (ret < 0)
         return ret;
    if (template->name) {
         led_dat->cdev.name = template->name;
         ret = devm_led_classdev_register(parent, &led_dat->cdev);
    } else {
         init data.fwnode = fwnode;
         ret = devm_led_classdev_register_ext(parent, &led_dat->cdev,
                               &init data);
    }
    return ret;
}
```

c) Users may access the file named brightness under

/sys/class/leds/sys/brightness, and call gpio_led_set to configure LED

status

```
static void gpio_led_set(struct led_classdev *led_cdev,
        enum led_brightness value)
{
        ...
        gpiod_set_value(led_dat->gpiod, level);
}
```

2.8.2 Pinmux Configuration Guide

Let's take the pad GPIO1_IO00 as an example to explain the pinmux setting steps.

vi arch/arm/boot/dts/emtop-som-et6ull-emmc.dts

&iom	uxc {				
	pinctrl_dummy: dummygrp {				
	fsl,pins = <				
			MX6UL_PAD_GPIO1_IO00GPIO1_IO00	0xb0	
		>;			
	};				
};					

The macro MX6UL_PAD_SNVS_TAMPER9__GPIO5_IO09 is defined in

arch/arm/boot/dts/imx6ul-pinfunc.h:

#define MX6UL_PAD_GPIO1_IO00GPIO1_IO00	0x005C
0x02E8 0x0000 0x5 0x0	

The value means:

•

mux_reg	conf_reg	input_reg	mux_mode	input_val
0x005C	0x02E8	0x0000	0x5	0x0

Usually we don't need to care about the value it defines, the only thing we need to do

is to select the target function from the head file.

#define MX6UL_PAD_GPI01_I000I2C2_SCL	0x00
5C 0x02E8 0x05AC 0x0 0x1	
#define MX6UL_PAD_GPI01_IO00GPT1_CAPTURE1	0x
005C 0x02E8 0x058C 0x1 0x0	
#define MX6UL_PAD_GPI01_IO00_ANATOP_OTG1_ID	0x
005C 0x02E8 0x04B8 0x2 0x0	
#define MX6UL_PAD_GPI01_IO00_ENET1_REF_CLK1	0x
005C 0x02E8 0x0574 0x3 0x0	
#define MX6UL_PAD_GPI01_IO00MQS_RIGHT	0x0
05C 0x02E8 0x0000 0x4 0x0	
#define MX6UL_PAD_GPI01_IO00GPI01_IO00	0x00
5C 0x02E8 0x0000 0x5 0x0	
#define MX6UL_PAD_GPI01_IO00ENET1_1588_EVENT0_IN	0x
005C 0x02E8 0x0000 0x6 0x0	
#define MX6UL_PAD_GPI01_I000SRC_SYSTEM_RESET	0
x005C 0x02E8 0x0000 0x7 0x0	
#define MX6UL_PAD_GPI01_I000WDOG3_WDOG_B	
0x005C 0x02E8 0x0000 0x8 0x0	

You can refer to the below description in <<u>iMX6ULLRM.pdf</u>>

IOMUXC	SW	MUX	CTL	PAD	GPI01	1000 field	descript	tions (continued)
				and the second se					

Field	Description						
	1 ENABLED — Force input path of pad GPIO1_IO00						
	0 DISABLED — Input Path is determined by functionality						
MUX_MODE	MUX Mode Select Field.						
	Select 1 of 9 iomux modes to be used for pad: GPIO1_IO00.						
	0000 ALT0 — Select mux mode: ALT0 mux port: I2C2_SCL of instance: i2c2						
	0001 ALT1 Select mux mode: ALT1 mux port: GPT1_CAPTURE1 of instance: gpt1						
	0010 ALT2 — Select mux mode: ALT2 mux port: ANATOP_OTG1_ID of instance: anatop						
	0011 ALT3 Select mux mode: ALT3 mux port: ENET1_REF_CLK1 of instance: enet1						
	0100 ALT4 - Select mux mode: ALT4 mux port: MQS_RIGHT of instance: mqs						
	0101 ALT5 — Select mux mode: ALT5 mux port: GPIO1_IO00 of instance: gpio1						
	0110 ALT6 Select mux mode: ALT6 mux port: ENET1_1588_EVENT0_IN of instance: enet1						
	0111 ALT7 - Select mux mode: ALT7 mux port: SRC_SYSTEM_RESET of instance: src						
	1000 ALT8 — Select mux mode: ALT8 mux port: WDOG3_WDOG_B of instance: wdog3						

&iomuxc {		
pinctrl_du	mmy: dummygrp {	
fsl,p	ins = <	
	MX6UL_PAD_GPIO1_IO00GPIO1_IO00	<padctrlvalue></padctrlvalue>
>;		
};		
};		
>; }; };		

The PADCtrlValue is described in <<u>iMX6ULLRM.pdf</u>>

32.6.153 SW_PAD_CTL_PAD_GPIO1_IO00 SW PAD Control Register (IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO00)

SW_PAD_CTL Register

Address: 20E_0000h base + 2E8h offset = 20E_02E8h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R							F	leserve	d							HYS
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
W	Pl	JS	PUE	PKE	ODE	f	Reserve	d	SP	EED	1	DSE	1	Rese	erved	SRE
Reset	0	0	0	1	0	0	0	0	1	0	1	1	0	0	0	0

IOMUXC_SW_PAD_CTL_PAD_GPI01_IO00 field descriptions

Field	Description
31–17	This field is reserved. Reserved
16 HYS	Hyst. Enable Field Select one out of next values for pad: GPIO1_IO00 0 HYS_0_Hysteresis_Disabled — Hysteresis Disabled 1 HYS_1_Hysteresis_Enabled — Hysteresis Enabled
15–14 PUS	Pull Up / Down Config. Field Select one out of next values for pad: GPIO1_IO00 00 PUS_0_100K_Ohm_Pull_Down — 100K Ohm Pull Down 01 PUS_1_47K_Ohm_Pull_Up — 47K Ohm Pull Up 10 PUS_2_100K_Ohm_Pull_Up — 100K Ohm Pull Up 11 PUS_3_22K_Ohm_Pull_Up — 22K Ohm Pull Up
13 PUE	Pull / Keep Select Field Select one out of next values for pad: GPIO1_IO00 0 PUE_0_Keeper — Keeper 1 PUE_1_Pull — Pull
12 PKE	Pull / Keep Enable Field Select one out of next values for pad: GPIO1_IO00 0 PKE_0_Pull_Keeper_Disabled — Pull/Keeper Disabled 1 PKE_1_Pull_Keeper_Enabled — Pull/Keeper Enabled
11 ODE	Open Drain Enable Field Select one out of next values for pad: GPIO1_IO00

Field	Description
	0 ODE_0_Open_Drain_Disabled — Open Drain Disabled
	1 ODE_1_Open_Drain_Enabled Open Drain Enabled
108 -	This field is reserved. Reserved
7–6 SPEED	Speed Field Select one out of next values for pad: GPIO1_IO00
	00 SPEED 0 low 50MHz - low(50MHz)
	01 SPEED_1_medium_100MHz medium(100MHz)
	10 SPEED 2 medium 100MHz - medium(100MHz)
	11 SPEED_3_max_200MHz max(200MHz)
5–3 DSE	Drive Strength Field Select one out of next values for pad: GPIO1_IO00
	000 DSE_0_output_driver_disabled_ — output driver disabled;
	001 DSE_1_R0_260_Ohm _3_3V _150_Ohm 1_8V_240_Ohm_for_DDR R0(260 Ohm @ 3.3V, 150 Ohm@1.8V, 240 Ohm for DDR)
	010 DSE_2_R0_2 R0/2
	011 DSE_3_R0_3 R0/3
	100 DSE_4_R0_4 R0/4
	101 DSE_5_R0_5 R0/5
	110 DSE_6_R0_6 R0/6
	111 DSE_7_R0_7 R0/7
2–1	This field is reserved. Reserved
0 SRE	Slew Rate Field Select one out of next values for pad: GPIO1_IO00
	0 SHE_U_SIOW_SIEW_Rate — Slow Slew Rate
	1 SHE_1_Fast_Slew_Hate — Fast Slew Hate

Sometimes, the PADCtrlValue can be set like 0x800xxxxx or 0x400xxxxx,

0x800xxxxx means no need to set its value, keep it as it was;

0x400xxxxx means to set SION bit, force input path of the pad.

2.9 System Update

SOM-ET6ULL board can boot up from both TF card and eMMC, this section br iefly introduce the process of system update on TF card and eMMC.

2.9.1 Update of TF Card System Image

1) Make A Bootable TF Card

a) Get the system image from <u>Image</u> directory, named as <u>imx-image-xxx</u>.
 <u>img.xz</u>, unxz it and create a raw image <u>imx-image-xxx.img</u>.

b) If you work under Windows system, please run <u>Tools/win32diskimager</u> to write the <u>imx-image-xxx.img</u> into TF Card. If you work under Linux system, please use **dd** command to write it into TF Card.

2) Update U-Boot

If you've made some changes to the u-boot source code, and want to update it into TFCard, please run the below command:

dd if=<YOUR_PATH>/flash.bin of=/dev/sdx bs=1K seek=33 conv=notrunc

Note:

/dev/sdx is the TFCard device node recognized under Ubuntu system.

3) Update Kernel

If you have modified the kernel source code, please update the dtb and Image under Partition 1 [FAT32] of the TF Card. That partition can be recognized by Windows or Linux.

4) Update Rootfs

Because EXT4 isn't accessible Under Windows, please mount the partition 2 of TF

Card under Ubuntu, change the target file and umount the Card.

Note:

Set the Boot Select Switch[SW2 on the base board] to "TF Boot", which is marked on the silk layer of the base board.

2.9.2 Update eMMC

Make a bootable TFCard and boot up the system, run below command to update eMMC:

root@arm:~# system-update.sh

```
&iomuxc {
    pinctrl_dummy: dummygrp {
        fsl,pins = <
            MX6UL_PAD_GPIO1_IO00_GPIO1_IO00 <PADCtriValue>
        >;
```

};

There are some updating messages show on terminal, and sys LED will blink.

After it's done, remove the TFCard, set the **Boot Select Switch[SW2 on the base board]** to "eMMC Boot" and reboot the board, it should boot from eMMC and enter into Linux prompt.

2.10 Test and Demonstration

This section will run some tests on the peripheral devices.

POWER: 12V DC

Debug Port: UART1, 115200 1N8.

2.10.1 RTC

There is a RTC chip RX8010 on board, so the integrated RTC is disabled by default.

So there is only one RTC accessible under system.

Let's set the current time to 2022-10-10 10:12,

root@arm:~# date -s "2022-10-10 10:12"; hwclock -w

Reboot the board, and check the hardware RTC time with below command:

root@arm:~# **hwclock**

2.10.2 TIMEZONE SETTING

Set Beijing Time for example:

root@arm:~# echo "Asia/Shanghai" > /etc/timezone

- root@arm:~# In -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
- root@arm:~# sync

Note:

If NXP Yocto image doesn't contain zoneinfo, copy <u>/usr/share/zoneinfo</u> under Ubuntu system to the board, and retry the above commands.

2.10.3 USB OTG

(To be continued)

2.10.4 USB HOST

There are 6 USB host channels [USB typeA slot] extended on the base board. Install

an USB disk on these slots, check message below:

[272.082860] usb-storage 2-1.1:1.0: USB Mass Storage device detected						
[272.098248] scsi host0: usb-storage 2-1.1:1.0						
[273.104255] scsi 0:0:0:0: Direct-Access SanDisk Flash Memory 0.1 PQ: 0						
A	NSI: 2						
[273.130158] sd 0:0:0:0: [sda] 2001888 512-byte logical blocks: (1.02 GB/977 MiB)						
[273.143825] sd 0:0:0:0: [sda] Write Protect is off						
[273.147410] sd 0:0:0:0: [sda] Mode Sense: 03 00 00 00						
[273.148611] sd 0:0:0:0: [sda] No Caching mode page found						
[273.155755] sd 0:0:0:0: [sda] Assuming drive cache: write through						
[273.176207] sda: sda1						
[273.199625] sd 0:0:0:0: [sda] Attached SCSI removable disk						
[273.783449] FAT-fs (sda1): Volume was not properly unmounted. Some data may be						
СС	corrupt. Please run fsck.						

root@arm:~# mount

/dev/sda1 on /run/media/sda1 type vfat (rw,relatime,gid=6,fmask=0007,dmask=0007,all
ow_utime=0020,codepage=437,iocharset=iso8859-1,shortname=mixed,errors=remount-ro)

The USB disk is automatically mounted under *<u>Irun/media/sda1</u>* by udev.

Reset USB Device

USB_OTG1	/sys/devices/platform/soc/2100000.aips-bus/2184000.usb
USB_OTG2	/sys/devices/platform/soc/2100000.aips-bus/2184200.usb

If you install the USB disk in slot J7 which is extended through USB_OTG2, search

the device name 'sda' under the system device path of USB_OTG2:

root@arm:~# egrep -nir sda /sys/devices/platform/soc/2100000.aips-bus/2184200. usb 2>/dev/null

/sys/devices/platform/soc/2100000.aips-bus/2184200.usb/ci_hdrc.1/usb2/2-1/2-1.1/2-1.1:1.0/host3/ target3:0:0/3:0:0:0/block/sda/sda1/uevent:3:DEVNAME=sda1

/sys/devices/platform/soc/2100000.aips-bus/2184200.usb/ci_hdrc.1/usb2/2-1/2-1.1/2-1.1:1.0/host3/ target3:0:0/3:0:0:0/block/sda/uevent:3:DEVNAME=sda

root@arm:~# node=/sys/devices/platform/soc/2100000.aips-bus/2184200.usb/ci_h
 drc.1/usb2/2-1/authorized; echo 0 > \$node;sleep 1;echo 1 > \$node

usb 2-1.1: USB disconnect, device number 7						
FAT-fs (sda1): FAT read failed (blocknr 32)						
hub 2-1:1.0: USB hub found						
hub 2-1:1.0: 4 ports detected						
usb 2-1: authorized to connect						
usb 2-1.1: new high-speed USB device number 8 using ci_hdrc						
usb-storage 2-1.1:1.0: USB Mass Storage device detected						
scsi host5: usb-storage 2-1.1:1.0						
scsi 5:0:0: Direct-Access SanDisk Flash Memory 0.1 PQ: 0 ANSI: 2						
sd 5:0:0:0: [sda] 2001888 512-byte logical blocks: (1.02 GB/977 MiB)						
sd 5:0:0:0: [sda] Write Protect is off						
sd 5:0:0:0: [sda] No Caching mode page found						
sd 5:0:0:0: [sda] Assuming drive cache: write through						
sda: sda1						
sd 5:0:0:0: [sda] Attached SCSI removable disk						
FAT-fs (sda1): Volume was not properly unmounted. Some data may be corrupt. Please run						
fsck.						

It resets successfully.

Of course, you can reset the USB bus, then all devices connected via the bus will reset at the same time.

 root@arm:~# node=/sys/devices/platform/soc/2100000.aips-bus/2184200.usb/ci_h drc.1/usb2/authorized; echo 0 > \$node;sleep 1;echo 1 > \$node

usb 2-1: USB disconnect, device number 2 usb 2-1.1: USB disconnect, device number 10 usb 2-1.2: USB disconnect, device number 9 FAT-fs (sda1): FAT read failed (blocknr 32) hub 2-0:1.0: USB hub found hub 2-0:1.0: 1 port detected usb usb2: authorized to connect usb 2-1: new high-speed USB device number 11 using ci hdrc hub 2-1:1.0: USB hub found hub 2-1:1.0: 4 ports detected usb 2-1.1: new high-speed USB device number 12 using ci_hdrc usb-storage 2-1.1:1.0: USB Mass Storage device detected scsi host9: usb-storage 2-1.1:1.0 usb 2-1.2: new high-speed USB device number 13 using ci_hdrc Bluetooth: hci0: rtl: examining hci_ver=06 hci_rev=000b lmp_ver=06 lmp_subver=8723 Bluetooth: hci0: rtl: loading rtl_bt/rtl8723b_fw.bin Bluetooth: hci0: rom_version status=0 version=1 scsi 9:0:0:0: Direct-Access SanDisk Flash Memory 0.1 PQ: 0 ANSI: 2 sd 9:0:0:0: [sda] 2001888 512-byte logical blocks: (1.02 GB/977 MiB) sd 9:0:0:0: [sda] Write Protect is off sd 9:0:0:0: [sda] No Caching mode page found sd 9:0:0:0: [sda] Assuming drive cache: write through sda: sda1 sd 9:0:0:0: [sda] Attached SCSI removable disk FAT-fs (sda1): Volume was not properly unmounted. Some data may be corrupt. Please run fsck. IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready

You can see that the USB disk and USB WiFi/BT module reset.

2.10.5 NETWORK

There are two 100Mbps network chip KSZ8081 on board.

root@arm:~# ifconfig eth0

eth0	Link encap:Ethernet HWaddr 3a:f7:82:bc:fa:0a
	inet addr:192.168.1.81 Bcast:192.168.1.255 Mask:255.255.255.0
	inet6 addr: fe80::38f7:82ff:febc:fa0a/64 Scope:Link
	UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
	RX packets:11 errors:0 dropped:4 overruns:0 frame:0
	TX packets:42 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:1555 (1.5 KiB) TX bytes:7192 (7.0 KiB)

DHCP feature is enabled as default; the board can request a valid IP address from

DHCP server in local network.

root@arm:~# ping -I eth0 www.baidu.com

PING www.a.shifen.com (14.215.177.38) from 192.168.1.81 eth0: 56(84) bytes of data.
64 bytes from www.baidu.com (183.232.231.174): icmp_seq=1 ttl=56 time=12.1 ms
64 bytes from www.baidu.com (183.232.231.174): icmp_seq=2 ttl=56 time=12.2 ms
64 bytes from www.baidu.com (183.232.231.174): icmp_seq=3 ttl=56 time=12.1 ms
64 bytes from www.baidu.com (183.232.231.174): icmp_seq=4 ttl=56 time=12.5 ms
^C
www.a.shifen.com ping statistics
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 7.058/7.447/7.771/0.319 ms

Do the same operations to eth1.

2.10.6 LCD

Devices already tested:

MODEL	RESOLUTION	TOUCH	LINUX DTB
EMTOP LCD8000-43T	480x272	TSADC	emtop-som-et6ull-480x272.dtb
EMTOP LCD8000-70T	800x480	TSADC	emtop-som-et6ull-emmc.dtb
LCD70-CTP	1024x600	FT5X06	emtop-som-et6ull-1024x600.dtb

Modify **<u>uEnv.txt</u>** in SD/eMMC FAT32 partition:

panel= <mark>480x272</mark>	

Change the value of 'panel' to the corresponding resolution of your target device,

save and reboot the arm board.

U-Boot 2016.03-00286-ga57b13b942-dirty (Oct 26 2022 - 16:26:11 +0800)		
CPU: Freescale i.MX6ULL rev1.1 69 MHz (running at 396 MHz)		
CPU: Industrial temperature grade (-40C to 105C) at 35C		
Reset cause: POR		
Board: EMTOP SOM-ET6ULL		
I2C: ready		
DRAM: 512 MiB		
MMC: FSL_SDHC: 0, FSL_SDHC: 1		
*** Warning - bad CRC, using default environment		
reading uEnv.txt		
263 bytes read in 9 ms (28.3 KiB/s)		

PANEL: 1024x600 in uEnv.txt	
Display: 1024x600 (1024x600)	
Video: 1024x600x24	
reading logo.bmp	
In: serial	
Out: serial	
Err: serial	
switch to partitions #0, OK	

2.10.7 TOUCH PANEL

The X11 system will run input calibrating program during its first booting. If you want

to recalibrate the touch panel, please try command below:

```
root@arm:~# rm -f /etc/pointercal.xinput; reboot
```

Next boot up, the system will display the calibration dialog.

2.10.8 BACKLIGHT

٠

Get the max brightness level:

root@arm:~# cat /sys/class/backlight/backlight/max_brightness

255

So the valid brightness level range is 0 ~ 255:

 root@arm:~# for i in `seq 50 250`; do echo \$i > /sys/class/backlight/backlight/ brightness; echo \$i;sleep 0.1;done

2.10.9 WM8960 AUDIO

Playback:

root@arm:~# aplay /usr/share/sounds/alsa/*.wav

Record:

- root@arm:~# amixer sset Headphone 127,127
- root@arm:~# amixer cset name='Playback Volume' 255,255

- root@arm:~# amixer cset name='Capture Volume' 0,31
- root@arm:~# amixer sset 'Left Output Mixer PCM' on
- root@arm:~# amixer sset 'Right Output Mixer PCM' on
- root@arm:~# amixer cset name='ADC PCM Capture Volume' 220,220
- root@arm:~# amixer cset name='Left Boost Mixer LINPUT1 Switch' off
- root@arm:~# amixer cset name='Left Boost Mixer LINPUT2 Switch' off
- root@arm:~# amixer cset name='Left Input Boost Mixer LINPUT2 Volume' 0
- root@arm:~# amixer cset name='Left Input Boost Mixer LINPUT3 Volume' 0
- root@arm:~# amixer cset name='Right Input Boost Mixer RINPUT1 Volume' 1
- root@arm:~# amixer cset name='ADC Data Output Select' 'Left Data = Right A
 DC; Right Data = Right ADC'

root@arm:~# arecord -r 44100 -f S16_LE -c 2 -d 10 record.wav

Wait several seconds, Ctrl+C to terminate arecord program. Now, let's play it to check:

root@arm:~# aplay record.wav

2.10.10 UART

DEVICE NODE	HARDWARE	USAGE
/dev/ttymxc0	UART1	DEBUG PORT
/dev/ttymxc1	UART2	RS485
/dev/ttymxc2	UART3	3-WIRE @ J22
/dev/ttymxc4	UART5	5-WIRE @ J23

Connect TXD and RXD of UART3 to run external loopback test:

root@arm:~# /test/app/com -d /dev/ttymxc2

SEND: 1234567890	
RECV: 1234567890	
SEND: 1234567890	
RECV: 1234567890	

Connect TXD and RXD, RTS and CTS of UART5 to run external loopback test with flow control:

root@arm:~# /test/app/com -f -d /dev/ttymxc4

SEND: 1234567890
RECV: 1234567890
SEND: 1234567890
RECV: 1234567890

2.10.11 RS485

Connect a RS485 device, or connect 2 boards directly:

Run below command on both of the boards:

root@arm:~# /test/app/com -d /dev/ttymxc1 -m rs485

SEND: 1234567890
RECV: 1234567890
SEND: 1234567890
RECV: 1234567890

2.10.12 CAN BUS

Connect 2 boards directly:

root@arm:~# ifconfig can0

can0	Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-
	NOARP MTU:16 Metric:1
	RX packets:0 errors:0 dropped:0 overruns:0 frame:0
	TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:10
	RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Configure parameters [both side]:

- root@arm:~# ifconfig can0 down
- root@arm:~# ip link set can0 type can bitrate 125000
- root@arm:~# ip link set can0 type can restart-ms 100
- root@arm:~# ifconfig can0 up

Start to listen on one board:

root@arm:~# candump can0 &

Send package on the other board:

root@arm:~# cansend can0 "5A1#1122334455667788"

For more information, please refer to project can-utils.

2.10.13 POWER BUTTON

root@arm:~# evtest /dev/input/event0

Input driver version is 1.0.1 Input device ID: bus 0x19 vendor 0x0 product 0x0 version 0x0 Input device name: "30370000.snvs:snvs-powerkey" Supported events:

Event type 0 (EV_SYN)
Event type 1 (EV_KEY)
Event code 116 (KEY_POWER)
Properties:
Testing (interrupt to exit)
Event: time 1591238021.080788, type 1 (EV_KEY), code 116 (KEY_POWER), value 1
Event: time 1591238021.080788, SYN_REPORT
Event: time 1591238021.144791, type 1 (EV_KEY), code 116 (KEY_POWER), value 0
Event: time 1591238021.144791, SYN_REPORT
Event: time 1591238021.544772, type 1 (EV_KEY), code 116 (KEY_POWER), value 1
Event: time 1591238021.544772, SYN_REPORT
Event: time 1591238021.608776, type 1 (EV_KEY), code 116 (KEY_POWER), value 0

2.10.14 LED

There are 2 LED array on the base board:

		LED2 LED1	
iMX6ULL	SNVS_TAMPER9		VDD5V
	_ GPIO1 1009		
			4G_LED
			ENET1_LED0
ENETI_SPEED			
ENET2_SPEED			

But there are only 2 leds we can control by software:

HARDWARE SIGNAL	DEVICE NODE	USAGE
SNVS_TAMPER9	/sys/class/leds/sys	System Status Heartbeat
GPIO1_IO09	/sys/class/leds/led2	User Control

Let's test GPIO1_IO09:

- root@arm:~# echo none > /sys/class/leds/led2/trigger
- root@arm:~# while test 1; do echo 1 > /sys/class/leds/led2/brightness;sleep 1;
 echo 0 > /sys/class/leds/led2/brightness;sleep 1;done

Your can see the corresponding LED blinking with 2Hz frequency.

2.10.15 GPIO

SIGNAL	GPIO	GPIO ID [GPIOn_IOM: 32^(h-1)+m]
EXT_INT	GPIO1_IO10	10
CLICK_RST	GPIO5_IO03	131

Initialization:

root@arm:~# echo 10 > /sys/class/gpio/export

Set output:

•

root@arm:~# echo out > /sys/class/gpio/gpio10/direction

Output high:

root@arm:~# echo 1 > /sys/class/gpio/gpio10/value

Output Low:

root@arm:~# echo 0 > /sys/class/gpio/gpio10/value

Or set input:

root@arm:~# echo in > /sys/class/gpio/gpio10/direction

Read input:

root@arm:~# cat /sys/class/gpio/gpio10/value

2.10.16 DI/DO

SIGNAL	GPIO	GPIO ID [GPIOn_IOm: 32*(n-1)+m]
DO0	GPIO4_IO17	113
DO1	GPIO4_IO19	115
DIO	GPIO4_IO18	114
DI1	GPIO4_IO20	116

Initialization:

- root@arm:~# for id in 113 114 115 116; do echo \$id > /sys/class/gpio/export
 2>/dev/null; done
- root@arm:~# for id in 113 115; do echo out > /sys/class/gpio/gpio\$id/direction;
 done
- root@arm:~# for id in 114 116; do echo in > /sys/class/gpio/gpio\$id/direction;
 done

Connect DO0 and DI0 in J23

Let DO0 output a signal sequence and read value from DI0:

root@arm:~# while test 1; do for i in 0 1; do echo \$i > /sys/class/gpio/gpio11
 3/value; sleep 1; cat /sys/class/gpio/gpio114/value; done; done

1			
0			
1			
0			
1			
0			
1			
0			
1			
0			

2.10.17 PCle

Devices already tested:

MODEL	DESCRIPTION
QUECTEL EC20	4G module

About QUECTEL EC20 test, please refer to chapter <<u>4G</u>>.

2.10.18 SPI FLASH

The SPIFlash chip is NOT placed on the core board.

2.10.19 TFCard

When booting from eMMC, the TFCard will be recognized as a removable disk device.

2.10.20 eMMC

eMMC is mainly used for storing system image, needless to test it manually.

2.10.21 Unique ID

root@arm:~# cat /sys/fsl_otp/HW_OCOTP_CFG[0-1]

0x5d5b3595 0x73a11d7

2.10.22 WIFI

Devices already tested:

MODEL

DESCRIPTION

REALTEK RTL8723B USB WiFi/Bluetooth module

root@arm:~# ifconfig wlan0 up

If it reports message: *SIOCSIFFLAGS: Operation not possible due to RF-kill*, please try below command:

root@arm:~# rfkill unblock all

Now, we can control it manually.

root@arm:~# ifconfig wlan0 up; iw wlan0 scan

BSS f0:b0:52:70:e2:	58(on wlan0)
last seen: 2	14.948s [boottime]
TSF: 0 use	c (0d, 00:00:00)
freq: 2447	
beacon inte	erval: 100 TUs
capability: E	ESS Privacy ShortPreamble ShortSlotTime (0x0431)
signal: -70.	00 dBm
last seen: 1	5156 ms ago
SSID: Emb	est_Guest
Supported	rates: 1.0* 2.0* 5.5* 11.0*
DS Parame	ter set: channel 8
Country: US	S Environment: Indoor/Outdoor
Cł	nannels [1 - 11] @ 36 dBm
ERP: <no fl<="" td=""><td>ags></td></no>	ags>
Extended s	upported rates: 6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0
HT capabili	ties:
Ca	apabilities: 0x1ad
	RX LDPC
	HT20
	SM Power Save disabled
	RX HT20 SGI
	TX STBC
	RX STBC 1-stream
	Max AMSDU length: 3839 bytes
	No DSSS/CCK HT40

- root@arm:~# killall wpa_supplicant udhcpc
- root@arm:~# wpa_passphrase WIFI_AP 12345678 >> /etc/wpa_supplicant.conf

File: /etc/wpa_supplicant.conf

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1
network={
key_mgmt=NONE
}
network={
ssid="WIFI_AP"
#psk="12345678"
psk=6d561555aad99b23640971509aa7594494e3e9cf4b2eece2cb5781d21f351d
b1
}

root@arm:~# wpa_supplicant -B -iwlan0 -c/etc/wpa_supplicant.conf

If everything works fine, it will get IP after several seconds.

root@arm:~# ifconfig wlan0

wlan0	Link encap:Ethernet HWaddr d0:c5:d3:d0:9c:33
	inet addr:192.168.1.101 Bcast:192.168.1.255 Mask:255.255.255.0
	inet6 addr: fe80::d2c5:d3ff:fed0:9c33/64 Scope:Link
	UP BROADCAST RUNNING MULTICAST DYNAMIC MTU:1500 Metric:1
	RX packets:60 errors:0 dropped:0 overruns:0 frame:0
	TX packets:94 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:7380 (7.2 KiB) TX bytes:12849 (12.5 KiB)

Now you can do some connection test.

root@arm:~# sync; reboot

Next boot, turn it on:

root@arm:~# rfkill unblock all; ifup wlan0; udhcpc -i wlan0

Wait a while for getting IP:

• root@arm:~# ifconfig wlan0

wlan0	Link encap:Ethernet HWaddr d0:c5:d3:d0:9c:33
	inet addr:192.168.1.101 Bcast:192.168.1.255 Mask:255.255.255.0
	inet6 addr: fe80::d2c5:d3ff:fed0:9c33/64 Scope:Link
	UP BROADCAST RUNNING MULTICAST DYNAMIC MTU:1500 Metric:1

RX packets:60 errors:0 dropped:0 overruns:0 frame:0 TX packets:94 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:7380 (7.2 KiB) TX bytes:12849 (12.5 KiB)

2.10.23 BLUETOOTH

Devices already tested:

MODEL	DESCRIPTION
REALTEK RTL8723B	USB WiFi/Bluetooth module
CSR8510 A10	USB Bluetooth 4.0 module

root@arm:~# hciconfig -a

hci0:	Type: BR/EDR Bus: USB
	BD Address: 30:7B:C9:44:2F:F7 ACL MTU: 820:8 SCO MTU: 255:16
	DOWN
	RX bytes:1225 acl:0 sco:0 events:122 errors:0
	TX bytes:23230 acl:0 sco:0 commands:122 errors:0
	Features: 0xff 0xff 0xfe 0xdb 0xff 0x7b 0x87
	Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
	Link policy: RSWITCH HOLD SNIFF PARK
	Link mode: SLAVE ACCEPT

- root@arm:~# rfkill unblock all
- root@arm:~# /etc/init.d/bluetooth restart
- root@arm:~# bluetoothctl

Agent registered [bluetooth]# power on Changing power on succeeded [bluetooth]# scan on Discovery started [CHG] Controller D0:C5:D3:F9:60:06 Discovering: yes [NEW] Device 63:EB:0D:5C:3D:F6 63-EB-0D-5C-3D-F6 [NEW] Device 51:02:9F:66:76:EC 51-02-9F-66-76-EC [NEW] Device 78:C5:28:67:88:03 78-C5-28-67-88-03 [NEW] Device 7B:A2:1E:1D:15:60 7B-A2-1E-1D-15-60 [bluetooth]# scan off

Please search bluetoothctl usage on web for more information.

2.10.24 4G

Install QUECTEL EC20, SIM card and antenna.

[1.520949] usbserial: USB Serial support registered for GSM modem (1-port)
[12.025951] option 2-1.3:1.0: GSM modem (1-port) converter detected
[12.053488] usb 2-1.3: GSM modem (1-port) converter now attached to ttyUSB0
[12.083780] option 2-1.3:1.1: GSM modem (1-port) converter detected
[12.109653] usb 2-1.3: GSM modem (1-port) converter now attached to ttyUSB1
[12.124588] option 2-1.3:1.2: GSM modem (1-port) converter detected
[12.152472] usb 2-1.3: GSM modem (1-port) converter now attached to ttyUSB2
[12.173640] option 2-1.3:1.3: GSM modem (1-port) converter detected
[12.192775] usb 2-1.3: GSM modem (1-port) converter now attached to ttyUSB3

- [12.213280] option 2-1.3:1.4: GSM modem (1-port) converter detected
- [12.241140] usb 2-1.3: GSM modem (1-port) converter now attached to ttyUSB4

root@arm:~# pppd call quectel-ppp &

CHAP authentication succeeded				
sent [IPCP ConfReq id=0x1 <addr 0.0.0.=""> <ms-dns1 0.0.0.=""> <ms-dns2 0.0.0.="">]</ms-dns2></ms-dns1></addr>				
rcvd [IPCP ConfReq id=0x0]				
sent [IPCP ConfNak id=0x0 <addr 0.0.0.="">]</addr>				
rcvd [IPCP ConfNak id=0x1 <addr 10.32.232.200=""> <ms-dns1 202.96.128.86=""> <ms-dns2< td=""></ms-dns2<></ms-dns1></addr>				
202.96.134.133>]				
sent [IPCP ConfReq id=0x2 <addr 10.32.232.200=""> <ms-dns1 202.96.128.86=""> <ms-dns2< td=""></ms-dns2<></ms-dns1></addr>				
202.96.134.133>]				
rcvd [IPCP ConfReq id=0x1]				
sent [IPCP ConfAck id=0x1]				
rcvd [IPCP ConfAck id=0x2 <addr 10.32.232.200=""> <ms-dns1 202.96.128.86=""> <ms-dns2< td=""></ms-dns2<></ms-dns1></addr>				
202.96.134.133>]				
Could not determine remote IP address: defaulting to 10.64.64.64				
local IP address 10.32.232.200				

remote IP address 10.64.64.64 primary DNS address 202.96.128.86 secondary DNS address 202.96.134.133 Script /etc/ppp/ip-up started (pid 981) Script /etc/ppp/ip-up finished (pid 981), status = 0x0

Connection test:

•	root@arm:~#	ping	-1	ppp0	www.baidu.com
---	-------------	------	----	------	---------------

PING www.a.shifen.com (14.215.177.38) from 10.32.232.200 ppp0: 56(84) bytes of data. 64 bytes from 14.215.177.38: icmp_seq=1 ttl=54 time=37.0 ms 64 bytes from 14.215.177.38: icmp_seq=2 ttl=54 time=43.5 ms 64 bytes from 14.215.177.38: icmp_seq=3 ttl=54 time=51.8 ms 64 bytes from 14.215.177.38: icmp_seq=4 ttl=54 time=41.4 ms ^C64 bytes from 14.215.177.38: icmp_seq=5 ttl=54 time=33.4 ms --- www.a.shifen.com ping statistics ---5 packets transmitted, 5 received, 0% packet loss, time 20329ms rtt min/avg/max/mdev = 33.408/41.456/51.856/6.272 ms

4G Disable

It's usually called 'airplane mode', disable wireless transmission.

root@arm:~# echo 1 > /sys/class/leds/4g_disable/brightness

4G Enable

•

root@arm:~# echo 0 > /sys/class/leds/4g_disable/brightness

4G Reset:

root@arm:~# echo 0 > /sys/class/leds/4g_reset/brightness; sleep 1; echo 1 > / sys/class/leds/4g_reset/brightness

2.10.25 SUSPEND and RESUME

Suspend to ram:

root@arm:~# echo mem > /sys/power/state

PM: Syncing filesystems ... done. Freezing user space processes ... (elapsed 0.006 seconds) done. Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done. Suspending console(s) (use no_console_suspend to debug) [Click the POWER KEY on the base board...] PM: suspend of devices complete after 137.489 msecs PM: suspend devices took 0.140 seconds PM: late suspend of devices complete after 2.748 msecs PM: noirq suspend of devices complete after 2.736 msecs Disabling non-boot CPUs ... PM: noirq resume of devices complete after 1.455 msecs PM: early resume of devices complete after 1.690 msecs mmc1: mmc_select_hs200 failed, error -74 : switch to mmc1 failed usb 2-1.1: reset high-speed USB device number 5 using ci_hdrc PM: resume of devices complete after 1690.457 msecs PM: resume devices took 1.690 seconds Bluetooth: hci0: rtl: examining hci ver=06 hci rev=000b lmp ver=06 lmp subver=8723 Bluetooth: hci0: rtl: loading rtl_bt/rtl8723b_fw.bin Bluetooth: hci0: rom_version status=0 version=1 Restarting tasks ... usb 2-1.3: USB disconnect, device number 4 done.