## **SBC-IMX8M**

# 用户手册

版本 1.0 - 2020 年 06 月 23 日

## 版权声明:

## 版本更新记录:

| 版本  | 更新日期       | 描述   |
|-----|------------|------|
| 1.0 | 2020-06-23 | 初次发行 |

iii

## 目录

| 第1章    | 概述              | . 1 |
|--------|-----------------|-----|
| 1.1    | 产品介绍            | . 1 |
| 1.2    | 资源下载            | . 1 |
| 1.3    | 硬件特性            | . 2 |
| 第2章    | LINUX 操作系统      | . 3 |
| 2.1    | 软件资源            | . 3 |
| 2.2    | Yосто 编译        | .1  |
| 2.3    | 系统烧写与启动         | . 1 |
| 2.3.1  | 启动方式选择          | .1  |
| 2.3.2  | MicroSD 卡启动     | .1  |
| 2.3.3  | eMMC 启动         | .1  |
| 2.4    | 系统更新            | . 2 |
| 2.4.1  | 更新 u-boot       | . 2 |
| 2.4.2  | 更新 kernel       | 2   |
| 2.5    | 测试和演示           | . 2 |
| 2.5.1  | RTC 测试          | . 3 |
| 2.5.2  | 时区设置            | . 3 |
| 2.5.3  | USB OTG 测试      | .4  |
| 2.5.4  | USB HUB 测试      | . 5 |
| 2.5.5  | NETWORK 测试      | .6  |
| 2.5.6  | MIPI DSI        | . 7 |
| 2.5.7  | USB TOUCH(待续)   | 8   |
| 2.5.8  | SPDIF AUDIO 测试  | . 9 |
| 2.5.9  | WM8904 AUDIO 测试 | 10  |
| 2.5.10 | 4G 测试(待续)       | 10  |
| 2.5.11 | UART 测试         | 10  |

| 2.5.12 | RS485 测试     | 12 |
|--------|--------------|----|
| 2.5.13 | 按键测试         | 13 |
| 2.5.14 | LED          | 13 |
| 2.5.15 | BEEP         | 14 |
| 2.5.16 | PCIe         | 14 |
| 2.5.17 | SPI FLASH    | 14 |
| 2.5.18 | MicroSD 测试   | 14 |
| 2.5.19 | eMMC 测试      | 15 |
| 2.5.20 | CAN 总线测试     | 15 |
| 2.5.21 | WIFI 测试      | 17 |
| 2.5.22 | BLUETOOTH 测试 | 19 |

## 第1章 概述

## 1.1 产品介绍



## 1.2 资源下载

浏览器访问(推荐 Firefox): SVN 服务器: 账号密码均为 1.3 硬件特性

## 第2章 Linux 操作系统

本章节将简要介绍产品附带的Linux 软件资源,并且会详细讲解嵌入式Linux 系统开发的过程、系统更新操作、功能测试、应用程序开发实例等内容。

#### 注意:

□ 本文档使用 Ubuntu Linux 系统作为操作系统。如果您的 PC 尚未安装 Linux 系统,请自行 安装。

## 2.1 软件资源

CDROM/Source/linux.git.tar.xz

CDROM/Source/u-boot.git.tar.xz

CDROM/Source/App

## 2.2 Yocto 编译

## 2.3 系统烧写与启动

#### 2.3.1 启动方式选择

按下 BOOT 按键: 强制从 MicroSD 启动

未按 BOOT 按键:默认从 eMMC 启动,若 eMMC 未保存启动映像则自动尝试 MicroSD 启动

#### 2.3.2 MicroSD 卡启动

将 Image 目录下的 imx-image-multimedia-imx8mmddr4evk-5.4.img.xz 解压后生成 imx-image-multimedia-imx8mmddr4evk-5.4.img (Windows 环境下可使用 7zip 软件解 压)。

选一张 MicroSD 卡 (容量 4GB 或以上)。下列步骤在 Windows 环境下完成:

- 将 <u>imx-image-multimedia-imx8mmddr4evk-5.4.img</u>通过 <u>win32diskimager</u>工 具写入到该卡中;
- 2. 卸载 MicroSD 卡, 烧写卡制作完成;
- 3. 将上述制作好的烧写卡安装到 ARM 板上, 启动后进入 linux 系统;
- 4. 执行命令开始烧写:
  - root@arm:~# update-system.sh

| UPDATE : C | OMPLETED |
|------------|----------|

## 2.3.3 eMMC 启动

移除 MicroSD 卡, ARM 板重新启动后即可从 eMMC 启动。

## 2.4 系统更新

#### 2.4.1 更新 u-boot

- root@arm:~# umount /dev/mmcblk2p\*
- root@arm:~# dd if=<YOUR\_PATH>/imx-boot of=/dev/mmcblk2 bs=1k seek=33 co nv=notrunc

#### 2.4.2 更新 kernel

直接替换/run/media/mmcblk2p1下的同名文件: fsl-imx8mm-demo.dtb 和 Image。

## 2.5 测试和演示

针对 Linux 系统进行功能演示。

底板推荐使用 12V/2A 的 DC 适配器,底板上使用的 DC 连接器规格如下,请选用合适的适配器:



## 2.5.1 RTC 测试

底板集成了 RTC 芯片 RX8025,系统中已禁用了 CPU 内置 RTC,故系统下仅能访问 一个 RTC 接口/dev/rtc0:

RTC 芯片使用 CR1220 纽扣电池作为后备电源, CR1220 电池座位置如下:



如需访问 RTC,参照如下命令:

- root@arm:~# date -s "2020-2-13 10:12"
- root@arm:~# hwclock -w

若已安装 RTC 电池则断电重启后可读取硬件 RTC 时钟信息:

root@arm:~# hwclock

### 2.5.2 时区设置

以设置北京时间为例:

- root@arm:~# echo "Asia/Shanghai" > /etc/timezone
- root@arm:~# In -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
- root@arm:~# sync

注意: Yocto 默认并未安装 zoneinfo 相关组件,请将 Ubuntu 系统/<u>usr/share/zoneinfo</u> 复制到 ARM 板的对应目录再执行上述操作后重启即可生效。

## 2.5.3 USB OTG 测试

底板使用标准 MicroUSB B 连接器实现 USB OTG 功能。使用转接线连接 U 盘或电脑均可正常识别,连接电脑将识别为 RNDIS 虚拟网卡。

MicroUSB B 连接器位置如下:



MicroUSB B 连接器规格如下,请使用标准 MicroUSB B 连接器接头的线材,避免出现 未知问题。



CPU 的 USB2 通过 USB2514B 扩展出 4 路 USB HOST 通道,并分别作如下表格设计。

| SIGNAL    | USAGE      |
|-----------|------------|
| DN1   DP1 | USB 触摸     |
| DN2   DP2 | 4G module  |
| DN3   DP3 | J24 USB 插槽 |
| DN4   DP4 | J23 USB 插槽 |

其中,USB 通道 1 通过 1 个 1\*2.50mm Wafer 连接器引出,用于连接支持 USB 通讯协议的触摸屏,同时如果 FPC 排线上的 USB 信号没有被占用,此接口也可以用作他用。 2.50mm Wafer 规格如下:



USB 通道2连接到 Mini PCIe 连接器上用来扩展4G 模块或者其他符合 MiniPCI 信号定 义的扩展模块。MiniPCIe 位置如下:



5

USB 通道 3 和 4 连接到标准的 USB Type A 连接器上,用来扩展符合 USB2.0 协议的外设。USB TypeA 规格如下:



控制 USB HUB 复位:

root@arm:~# node=/sys/class/leds/usbhub\_reset/brightness; echo 0 > \$node;sle
 ep 1;echo 1 > \$node

[ 1967.294776] usb 1-1: USB disconnect, device number 3 [ 1967.299981] usb 1-1.2: USB disconnect, device number 4 ( reseting ... ) [ 1030.068743] usb 1-1: new high-speed USB device number c [ 1030.230896] hub 1-1:1.0: USB hub found [ 1030.234947] hub 1-1:1.0: 4 ports detected

## 2.5.5 NETWORK 测试

本板配有一路千兆网卡:

root@arm:~# ifconfig eth0

```
eth0: flags=-28669<UP,BROADCAST,MULTICAST,DYNAMIC> mtu 1500
ether 1c:ba:8c:98:8b:58 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

device interrupt 176

系统默认自动获取 IP, 若需要强制手动获取可执行如下命令:

root@arm:~# dhclient -v eth0

Internet Systems Consortium DHCP Client 4.3.5 Copyright 2004-2016 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0/1c:ba:8c:98:8b:58 Sending on LPF/eth0/1c:ba:8c:98:8b:58 Sending on Socket/fallback DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 5 DHCPREQUEST of 192.168.8.27 on eth0 to 255.255.255.255 port 67 DHCPOFFER of 192.168.8.27 from 192.168.8.254 DHCPACK of 192.168.8.27 -- renewal in 40882 seconds.

root@arm:~# ping -I eth0 www.baidu.com

PING www.a.shifen.com (14.215.177.38) from 192.168.8.26 eth0: 56(84) bytes of d. 64 bytes from 14.215.177.38 (14.215.177.38): icmp\_seq=1 ttl=55 time=7.77 ms 64 bytes from 14.215.177.38 (14.215.177.38): icmp\_seq=2 ttl=55 time=7.73 ms 64 bytes from 14.215.177.38 (14.215.177.38): icmp\_seq=3 ttl=55 time=7.22 ms 64 bytes from 14.215.177.38 (14.215.177.38): icmp\_seq=4 ttl=55 time=7.05 ms ^C --- www.a.shifen.com ping statistics ---4 packets transmitted, 4 received, 0% packet loss, time 3004ms

rtt min/avg/max/mdev = 7.058/7.447/7.771/0.319 ms

### 2.5.6 MIPI DSI

默认支持 EK79007 DSI 模组,分辨率 1024x600。

MIPI DSI 接口位置如下:



## 2.5.7 USB TOUCH (待续)

USB Touch 为一个 4Pin 2.50mm 间距的 Wafer 连接器,内核已经集成标准 USB 触摸 驱动。USB Touch 接口位置如下:



8

## 2.5.8 SPDIF AUDIO 测试

SPDIF 使用标准光纤连接器,连接器位置如下:



root@arm:~# aplay -L



连接上 SPDIF 转接头后可通过 3.5mm 耳机播放音频:

#### root@arm:~# aplay /usr/share/sounds/alsa/\*.wav

Playing WAVE '/usr/share/sounds/alsa/Front\_Center.wav' : Signed 16 bit Little Eo Playing WAVE '/usr/share/sounds/alsa/Front\_Left.wav' : Signed 16 bit Little Endo Playing WAVE '/usr/share/sounds/alsa/Front\_Right.wav' : Signed 16 bit Little Endo

## 2.5.9 WM8904 AUDIO 测试

底板通过解码芯片 WM8964 实现音频输出输出,用来驱动耳机及麦克风(暂未实现)。 3.5mm 音频连接器位置如下图,其中绿色连接器为输出接口,用以驱动耳机,粉色连接器 为麦克风输入接口。



root@arm:~# aplay -D plughw:1,0 /usr/share/sounds/alsa/\*.wav

#### 2.5.10 4G测试(待续)

#### 2.5.11 UART 测试

系统包含 4 个 UART 通讯接口,其中 UART1 用于连接蓝牙模块,为专用口占用;UART2 用作调试接口,3.3V IO 电平,客户可以连接此接口进行调试工作;UART3 用于扩展 RS485; UART4 用于扩展其他外部设备。

含自带自带串口和 USB 扩展串口:

| 软件接口         | 硬件接口  | 用途    |
|--------------|-------|-------|
| /dev/ttymxc0 | UART1 | 蓝牙    |
| /dev/ttymxc1 | UART2 | 调试串口  |
| /dev/ttymxc2 | UART3 | RS485 |
| /dev/ttymxc3 | UART4 |       |

#### UART2 调试串口位置如下:



UART4 调试串口位置如下:



这里仅测试 UART4,通过短接 TXD 和 RXD 实现自回环测试:

root@arm:~# /test/com -d /dev/ttymxc3

| SEND: 1234567890 |
|------------------|
| RECV: 1234567890 |
| SEND: 1234567890 |
| RECV: 1234567890 |

## 2.5.12 RS485 测试

RS485 连接器位置如下:



RS485 连接器的规格如下:

## TP381H-00V





#### L=P×Poles

| 技术参数 (Technical Data)        |                   |
|------------------------------|-------------------|
| 间 距 (Center Space)           | 3.81mm            |
| 额定参数(Rated Parameters)       | 300V,8A           |
| 冲击电压 (Rated Surge Voltage)   | 4000V             |
| PCB孔径 (PCB Holes Diameter)   | ф 1.4mm           |
| 绝缘本体(Insulation Body)        | PA66,UL94,V-0     |
| 焊接端子 (Terminal Body)         | Brass, Tin Plated |
| 使用温度 (Operating Temperature) | -40°C~+105°C      |
| 有效极数(Available Poles)        | 2~22              |

连接 RS485 设备,执行如下命令测试字符串收发:

root@arm:~# /test/com -d /dev/ttymxc2 -m rs485

SEND: 1234567890 RECV: 1234567890 SEND: 1234567890 RECV: 1234567890

#### 2.5.13 按键测试

POWER DOWN 按键:

root@arm:~# evtest /dev/input/event0

| Input driver version is 1.0.1                                                 |
|-------------------------------------------------------------------------------|
| Input device ID: bus 0x19 vendor 0x0 product 0x0 version 0x0                  |
| Input device name: "30370000.snvs:snvs-powerkey"                              |
| Supported events:                                                             |
| Event type 0 (EV_SYN)                                                         |
| Event type 1 (EV_KEY)                                                         |
| Event code 116 (KEY_POWER)                                                    |
| Properties:                                                                   |
| Testing (interrupt to exit)                                                   |
| Event: time 1591238021.080788, type 1 (EV_KEY), code 116 (KEY_POWER), value 1 |
| Event: time 1591238021.080788, SYN_REPORT                                     |
| Event: time 1591238021.144791, type 1 (EV_KEY), code 116 (KEY_POWER), value 0 |
| Event: time 1591238021.144791, SYN_REPORT                                     |
| Event: time 1591238021.544772, type 1 (EV_KEY), code 116 (KEY_POWER), value 1 |
| Event: time 1591238021.544772, SYN_REPORT                                     |
| Event: time 1591238021.608776, type 1 (EV_KEY), code 116 (KEY_POWER), value 0 |

## 2.5.14 LED

٠

核心板 D21 默认用于系统心跳指示灯。不过可以手动切换其工作模式。

- root@arm:~# echo none > /sys/class/leds/sys/trigger
- root@arm:~# while test 1; do echo 1 > /sys/class/leds/sys/brightness;sleep 1;e
   cho 0 > /sys/class/leds/sys/brightness;sleep 1;done

#### 2.5.15 BEEP

root@arm:~# while test 1; do echo 1 > /sys/class/leds/beep/brightness;sleep 1; echo 0 > /sys/class/leds/beep/brightness;sleep 1;done

#### 2.5.16 PCIe

已测试一款 PCIe 转 USB3.0 模块 uPD72020x。

## 2.5.17 SPI FLASH

root@arm:~# cat /proc/mtd

dev: size erasesize name mtd0: 00800000 00010000 "30bb0000.spi"

擦除:

root@arm:~# flash\_erase /dev/mtd0 0 0

格式化:

•

root@arm:~# mkfs.ext4 /dev/mtdblock0

mke2fs 1.45.3 (14-Jul-2019) Creating filesystem with 8192 1k blocks and 2048 inodes Allocating group tables: done Writing inode tables: done Creating journal (1024 blocks): done Writing superblocks and filesystem accounting information: done

挂载:

root@arm:~# mount /dev/mtdblock0 /mnt

[ 2107.531052] EXT4-fs (mtdblock0): mounted filesystem with ordered data mode. )

[ 2107.539223] ext4 filesystem being mounted at /mnt supports timestamps until )

### 2.5.18 MicroSD 测试

安装 MicroSD 卡后系统可提示新的存储设备接入并自动挂载到/run 目录下。

操作/mnt 目录即可保存数据到 SPI FLASH。

## 2.5.19 eMMC 测试

用于主系统存储。

## 2.5.20 CAN 总线测试

CAN 连接器位置如下:



GNDLH

CAN 连接器规格如下:

## TP381H-00V





## L=P×Poles

| 技术参数  | (Technical Data)        |                   |
|-------|-------------------------|-------------------|
| 间距    | (Center Space)          | 3.81mm            |
| 额定参数  | (Rated Parameters)      | 300V,8A           |
| 冲击电压  | (Rated Surge Voltage)   | 4000V             |
| PCB孔径 | (PCB Holes Diameter)    | φ1.4mm            |
| 绝缘本体  | (Insulation Body)       | PA66,UL94,V-0     |
| 焊接端子  | (Terminal Body)         | Brass, Tin Plated |
| 使用温度  | (Operating Temperature) | -40°C~+105°C      |
| 有效极数  | (Available Poles)       | 2~22              |

#### root@arm:~# ifconfig can0

| can0 | Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00- |
|------|------------------------------------------------------------------|
|      | NOARP MTU:16 Metric:1                                            |
|      | RX packets:0 errors:0 dropped:0 overruns:0 frame:0               |
|      | TX packets:0 errors:0 dropped:0 overruns:0 carrier:0             |
|      | collisions:0 txqueuelen:10                                       |
|      | RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)                            |

配置 CAN 总线:

- root@arm:~# ifconfig can0 down
- root@arm:~# ip link set can0 type can bitrate 125000
- root@arm:~# ip link set can0 type can restart-ms 100
- root@arm:~# ifconfig can0 up

监听总线:

root@arm:~# candump can0 &

发送数据:

٠

#### root@arm:~# cansend can0 "5A1#1122334455667788"

详细说明请参考开源软件: can-utils。

### 2.5.21 WIFI 测试

WIFI 需要用户自行安装 2.4G/5G 复合天线,模组使用 IPX 连接器。 IPX 连接器位于核心板上,位置如下:



IPX 连接器规格如下,请选用合适的适配线材,以免损坏核心板:



安装 SDIO 扩展 WIFI 模块,系统将自动生成 wlan0 网络接口:

#### root@arm:~# **rfkill unblock all**

注意:若执行 up 时报错: SIOCSIFFLAGS: Operation not possible due to RF-kill,请 运行上述命令后重试。

#### root@arm:~# **ifconfig wlan0 up; iw wlan0 scan**

| BSS f0: | BSS f0:b0:52:70:e2:58(on wlan0)                              |  |
|---------|--------------------------------------------------------------|--|
|         | last seen: 214.948s [boottime]                               |  |
|         | TSF: 0 usec (0d, 00:00:00)                                   |  |
|         | freq: 2447                                                   |  |
|         | beacon interval: 100 TUs                                     |  |
|         | capability: ESS Privacy ShortPreamble ShortSlotTime (0x0431) |  |
|         | signal: -70.00 dBm                                           |  |
|         | last seen: 15156 ms ago                                      |  |

٠

SSID: Embest\_Guest Supported rates: 1.0\* 2.0\* 5.5\* 11.0\* DS Parameter set: channel 8 Country: US Environment: Indoor/Outdoor Channels [1 - 11] @ 36 dBm ERP: <no flags> Extended supported rates: 6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0 HT capabilities: Capabilities: 0x1ad **RX LDPC** HT20 SM Power Save disabled RX HT20 SGI TX STBC RX STBC 1-stream Max AMSDU length: 3839 bytes No DSSS/CCK HT40 ... ...

可扫描到远端节点则表示模块工作正常,然后可使用 wpa\_supplicant 连接无线路由器,请网上检索其用法。

### 2.5.22 BLUETOOTH 测试

蓝牙模块与 WiFi 模块共用天线,请参考 2.5.21 内容获取天线连接器相关信息。

root@arm:~# hciattach /dev/ttymxc0 bcm43xx 921600

| bcm43xx_init                                   |
|------------------------------------------------|
| Set Controller UART speed to 921600 bit/s      |
| Flash firmware /etc/firmware/BCM4345C0.1MW.hcd |
| Set Controller UART speed to 921600 bit/s      |
| Setting TTY to N_HCI line discipline           |
| Device setup complete                          |

root@arm:~# hciconfig -a

| hci0: | Type: Primary Bus: UART                                     |
|-------|-------------------------------------------------------------|
|       | BD Address: D0:C5:D3:F9:60:06 ACL MTU: 1021:8 SCO MTU: 64:1 |
|       | DOWN                                                        |
|       | RX bytes:708 acl:0 sco:0 events:38 errors:0                 |
|       | TX bytes:443 acl:0 sco:0 commands:38 errors:0               |
|       | Features: 0xbf 0xfe 0xcf 0xfe 0xdb 0xff 0x7b 0x87           |
|       |                                                             |

Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3 Link policy: RSWITCH SNIFF

Link mode: SLAVE ACCEPT

- root@arm:~# rfkill unblock all
- root@arm:~# bluetoothctl

Agent registered [bluetooth]# power on Changing power on succeeded [bluetooth]# scan on Discovery started [CHG] Controller D0:C5:D3:F9:60:06 Discovering: yes [NEW] Device 63:EB:0D:5C:3D:F6 63-EB-0D-5C-3D-F6 [NEW] Device 51:02:9F:66:76:EC 51-02-9F-66-76-EC [NEW] Device 78:C5:28:67:88:03 78-C5-28-67-88-03 [NEW] Device 7B:A2:1E:1D:15:60 7B-A2-1E-1D-15-60 .... [bluetooth]# scan off

其他操作请参考网络资料。